مدل‌سازی مقاومت فشاری بتن غلتکی با استفاده از شبکه عصبی مصنوعی، انفیس و ماشین بردار پشتیبان

نویسندگان

  • سیدحسام مدنی عضو هیئت علمی، دانشکده عمران و نقشه‌برداری، دانشگاه تحصیلات تکمیلی و فناوری پیشرفته کرمان
  • محمد عمادی کارشناسی ارشد سازه، دانشگاه تحصیلات تکمیلی و فناوری پیشرفته کرمان
چکیده مقاله:

امروزه از بتن غلتکی در ساخت سد‌ها و روسازی راه‌ها استفاده می‌شود و طی سال‌های اخیر استفاده از این نوع بتن به علت مزایایی چون کوتاه شدن زمان ساخت، در دسترس بودن مصالح مورد نیاز، عملکرد مناسب در نواحی سرد و عمر مفید طولانی گسترش یافته است. مهم‌ترین خاصیت مکانیکی بتن غلتکی، مقاومت فشاری می‌باشد که افزایش آن می‌تواند عملکرد این نوع بتن را بهبود بخشد. حساسیت بتن غلتکی به اجزای تشکیل‌دهنده آن سبب مشکلاتی در پیش‌بینی مقاومت فشاری شده است. پارامترهایی نظیر مقدار سیمان، نسبت آب به مواد سیمانی، مقدار مواد سیمانی جایگزین و نسبت درشت‌دانه به ریزدانه اثر زیادی بر مقاومت فشاری بتن غلتکی دارند. در دهه‌های اخیر، مدل‌سازی به‌وسیله هوش مصنوعی، جایگاه ویژه‌ای در علوم فنی و مهندسی پیدا کرده است و پیش‌بینی رفتار موادی که با پیچیدگی‌های فراوانی روبه‌رو بوده، تا حدودی به کمک این روش میسر شده است. در این تحقیق، مجموعه‌ای از طرح­های اختلاط ساخته شده توسط مؤلفین و طرح­های اختلاط ساخته شده در مطالعات دیگر جمع‌آوری گردید. با در نظر گرفتن اجزای طرح اختلاط و سن نمونه‌ها به‌عنوان متغیرهای ورودی، مدل‌های شبکه عصبی مصنوعی، سیستم استنتاج فازی عصبی تطبیقی و ماشین‌های بردار پشتیبان برای پیش‌بینی مقاومت فشاری ساخته شدند. مقایسه نتایج نشانگر این است که مدل شبکه عصبی مصنوعی توانایی بیشتری نسبت به مدل‌های سیستم استنتاج فازی عصبی تطبیقی و ماشین‌ بردار پشتیبان در پیش‌بینی مقاومت فشاری بتن غلتکی دارد. همچنین، مقاومت‌های تخمین زده شده توسط شبکه عصبی مصنوعی و ماشین بردار پشتیبان به ترتیب بیشترین و کمترین تطابق را با مقاومت فشاری واقعی دارند. مقدار ضریب همبستگی، ریشه میانگین مربعات خطا و میانگین خطای مطلق شبکه عصبی مصنوعی به ترتیب برابر با 9717/0، 4859/2 و 1396/2 است. این مقادیر برای ماشین بردار پشتیبان به ترتیب برابر 9566/0، 4013/3 و 0733/3  می‌باشند.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مدل سازی رواناب رودخانه صوفی چای با استفاده از ماشین بردار پشتیبان و شبکه عصبی مصنوعی

Accurate simulation runoff process can have a significant role in water resources management and related issues. The inherent complexity of  this process makes difficult the use of physical and numerical models. In recent years, application of intelligent models is increased a powerful tool in hydrological modeling. The aim of this study was the application of the Gamma test to select the optim...

متن کامل

شناسایی گردوغبار در تصاویر ماهواره‌ای MODIS با استفاده از روشهای ماشین بردار پشتیبان، شبکه عصبی مصنوعی و درخت تصمیمگیری

یکی از مهمترین بلایای طبیعی که طی سالیان اخیر موردتوجه قرارگرفته، پدیده‌ی گردوغبار است. در سال‌های اخیر این پدیده در ایران ابعاد تازه‌ای گرفته و از یک معضل محلی، به مسئله‌ای ملی تبدیل شده است. شناسایی و تشخیص طوفان گردوغبار اولین مرحله در بررسی و پایش آن می‌باشد. این تحقیق باهدف شناسایی مناطق دارای گردوغبار از تصاویر ماهواره‌ای، در منطقه خاورمیانه انجام گرفته است. در بررسی پدیده گردوغبار تصاویر...

متن کامل

تهیه نقشه کاربری اراضی دشت عباس ایلام با استفاده از روش‌های شبکه عصبی مصنوعی، ماشین بردار پشتیبان و حداکثر احتمال

یکی از ضروری‌ترین اطلاعات مورد نیاز مدیران و متولیان منابع طبیعی، نقشه‌های کاربری اراضی می‌باشد. در پژوهش حاضر، به‌منظور تهیة نقشة کاربری اراضی دشت عباس از داده‌های رقومی سنجنده (1386)ETM+ استفاده شد. ابتدا تصویر با میانگین خطای مربعات 47/0 پیکسل تصحیح هندسی شد. جهت طبقه­بندی تصویر از روش‌های طبقه­بندی شبکه عصبی مصنوعی، ماشین بردار پشتیبان و حداکثر احتمال استفاده شد. در نهایت، نقشة پوشش اراضی م...

متن کامل

بررسی پایداری استاتیکی ولتاژ با استفاده از ماشین بردار پشتیبان و شبکه عصبی

پایداری ولتاژ یک مسئله اساسی در سیستم قدرت می‌باشد. در این مقاله پایداری ولتاژ از حیث استاتیکی، و کاربرد شبکه عصبی و SVM در تخمین حد پایداری و نیز پیش‌بینی پایداری ولتاﮊ بررسی شده است. پایداری ولتاژ در دو بخش مورد ارزیابی قرار گرفته است. در بخش اول، محاسبه حاشیه پایداری استاتیکی ولتاژ به وسیله شبکه عصبی RBF بیان می‌شود. مزیت روش استفاده شده، دقت بالای آن در تشخیص حاشیه پایداری ولتاژ به صورت بهن...

متن کامل

بررسی پایداری استاتیکی ولتاژ با استفاده از ماشین بردار پشتیبان و شبکه عصبی

پایداری ولتاژ یک مسئله اساسی در سیستم قدرت می‌باشد. در این مقاله پایداری ولتاژ از حیث استاتیکی، و کاربرد شبکه عصبی و SVM در تخمین حد پایداری و نیز پیش‌بینی پایداری ولتاﮊ بررسی شده است. پایداری ولتاژ در دو بخش مورد ارزیابی قرار گرفته است. در بخش اول، محاسبه حاشیه پایداری استاتیکی ولتاژ به وسیله شبکه عصبی RBF بیان می‌شود. مزیت روش استفاده شده، دقت بالای آن در تشخیص حاشیه پایداری ولتاژ به صورت بهن...

متن کامل

تحلیل عدم قطعیت مدل‌های شبکه عصبی مصنوعی و ماشین بردار پشتیبان در تخمین بارش

در این تحقیق سعی گردید، ترکیب ورودی و مدل مناسب برای تخمین بارش‌های شهرستان شاهرود تعیین گردد. برای رسیدن به این هدف از داده­های ماهانه هواشناسی شامل تبخیر، دما، رطوبت نسبی هوا، تابش­های خورشیدی، سرعت باد در دوره­ آماری 1342 تا 1394 و مدل­های شبکه عصبی مصنوعی و ماشین بردار پشتیبان استفاده شده است. 75 درصد از داده­ها برای واسنجی و 25 درصد دیگر جهت اعتبارسنجی مدل­ها استفاده شده است. در این تحقیق ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 3  شماره 3

صفحات  55- 78

تاریخ انتشار 2017-11-22

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023